Roundtable Discussion Winter 2020 - II

Event Date

1147 Math. Sci. Bldg.

We will have our second UCD4ISD roundtable discussion in Winter Quarter 2020 with Professor Bin Yu of UC Berkeley (Stat). Subjects/themes of this round discussion include but not limited to:

  • Data science activities at UC Berkeley: the status of organization, Prof. Yu's vision and wishes, etc.
  • Future of data science research and education

The reception with refreshments is also held in the same room 1147 MSB during this roundtable discussion.

After the roundtable discussion, Prof. Yu will give the following 12th Joint Math/Statistics Colloquium talk at 4:10pm:

Title: Veridical Data Science
Abstract: Veridical data science extracts reliable and reproducible information from data, with an enriched technical language to communicate and evaluate empirical evidence in the context of human decisions and domain knowledge. Building and expanding on principles of statistics, machine learning, and the sciences, we propose the predictability, computability, and stability (PCS) framework for veridical data science. Our framework is comprised of both a workflow and documentation and aims to provide responsible, reliable, reproducible, and transparent results across the entire data science life cycle. Moreover, we propose the PDR desiderata for interpretable machine learning as part of veridical data science (with PDR standing for predictive accuracy, predictive accuracy and relevancy to a human audience and a particular domain problem). The PCS framework will be illustrated through the development of the DeepTune framework for characterizing V4 neurons. DeepTune builds predictive models using DNNs and ridge regression and applies the stability principle to obtain stable interpretations of 18 predictive models. Finally, a general DNN interpretaion method based on contexual decomposition (CD) will be discussed with applications to sentiment analysis and cosmological parameter estimation.